Relative roles of the fla/che P(A), P(D-3), and P(sigD) promoters in regulating motility and sigD expression in Bacillus subtilis.

نویسندگان

  • J T West
  • W Estacio
  • L Márquez-Magaña
چکیده

Three promoters have been identified as having potentially important regulatory roles in governing expression of the fla/che operon and of sigD, a gene that lies near the 3' end of the operon. Two of these promoters, fla/che P(A) and P(D-3), lie upstream of the >26-kb fla/che operon. The third promoter, P(sigD), lies within the operon, immediately upstream of sigD. fla/che P(A), transcribed by E sigma(A), lies >/=24 kb upstream of sigD and appears to be largely responsible for sigD expression. P(D-3), transcribed by E sigma(D), has been proposed to participate in an autoregulatory positive feedback loop. P(sigD), a minor sigma(A)-dependent promoter, has been implicated as essential for normal expression of the fla/che operon. We tested the proposed functions of these promoters in experiments that utilized strains that bear chromosomal deletions of fla/che P(A), P(D-3), or P(sigD). Our analysis of these strains indicates that fla/che P(A) is absolutely essential for motility, that P(D-3) does not function in positive feedback regulation of sigD expression, and that P(sigD) is not essential for normal fla/che expression. Further, our results suggest that an additional promoter(s) contributes to sigD expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis.

The fla/che region contains more than 30 genes required for flagellar synthesis and chemotaxis in Bacillus subtilis, including the gene for the flagellum-specific sigmaD factor, sigD. Sequence and primer extension data demonstrate that a PA promoter immediately upstream of flgB, henceforth referred to as the fla/che PA, and the PD-3 promoter are active in vivo. Transcription from the PD-3 eleme...

متن کامل

DegU-P represses expression of the motility fla-che operon in Bacillus subtilis.

Bacillus subtilis implements several adaptive strategies to cope with nutrient limitation experienced at the end of exponential growth. The DegS-DegU two-component system is part of the network involved in the regulation of postexponential responses, such as competence development, the production of exoenzymes, and motility. The degU32(Hy) mutation extends the half-life of the phosphorylated fo...

متن کامل

Temporal regulation of sigD from Bacillus subtilis depends on a minor promoter in front of the gene.

I investigated the transcriptional regulation of sigmaD synthesis. sigD is part of the fla/che operon, but the gene is also preceded by a promoter of its own. fla/che-dependent transcription is severely reduced in sigD-negative strains. Activity of the promoter in front of sigD is strictly temporally regulated. Deletion of this promoter results in a reduced and delayed activation of transcripti...

متن کامل

Gene position within a long transcript as a determinant for stochastic switching in bacteria.

How cultures of genetically identical cells bifurcate into distinct phenotypic subpopulations under uniform growth conditions is an important question in developmental biology of relevance even to relatively simple developmental systems, such as spore formation in bacteria. A growing Bacillus subtilis culture consists of either cells that are motile and can swim or cells that are non-motile and...

متن کامل

RelA inhibits Bacillus subtilis motility and chaining.

The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 17  شماره 

صفحات  -

تاریخ انتشار 2000